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ABSTRACT

This paper presents an analytical study of the
interaction between incident wave fields and a single
rib on a fluid-loaded panel. The panel is modeled as
an infinite membrane (with frequency dependent tension
to partially simulate the dispersion characteristics
of a thin elastic plate), and the incident waves are
taken as plane structural or acoustic waves at normal
and oblique incidence on the rib. Our principal con-
cern is with the structural wave field transmitted
across the rib (in the case of infinite mechanical
impedance and finite nonlocal rib impedance) though
the nonspecular acoustic field scattered by the panel-
plus-rib is also examined. Matched asymptotic expan-
sions are used to construct analytical approximations
covering the entire frequency range, utilizing the
smallness of a "fluid-loading-at-coincidence" parame-
ter. The analytical results recover numerical results
obtained elsewhere in appropriate regions of parame-
ter space, complement them by providing simple approx-
imations in those regions (typically of rapid variation
or of heavy fluid loading) where numerical methods are
difficult to implement, and reveal the physical aspects
of fluid loading in effecting energy transfer across
ribbed structures.

ADMINISTRATIVE INFORMATION

This work was performed under DTNSRDC Contract Nos. N68171-78-M-9493

and N68171-79-M-8380, and DTNSRDC Job Order 1-1902-005-01. Dr. Crighton

is Head of the Department of Applied Mathematical Studies, University of

Leeds, Leeds, England.

1. INTRODUCTION

This report attempts to give a comprehensive analytical description

of acoustic and vibration phenomena associated with the interaction

between plane acoustic or structural waves and a single mechanical line

constraint on a fluid-loaded surface. Specifically, the phenomena

analyzed concern the transmission of free subsonic surface wave energy



across the constraint (the "rib"), the generation of an acoustic field in

the transmission process (i.e., the scattering of vibration energy into

sound), and the non-specular field generated when a plane propagating

acoustic wave is incident upon, and reflected by, the surface. Studies

of these processes have, of course, been made before; for the transmission

coefficient see [1,21, while the scattered acoustic field has recently

been examined in [3] and [4].

None of these studies has, however, been able to cover the whole

frequency range of interest because they have not exploited the fact that

an appropriately defined fluid loading parameter E is invariably small.

This smallness can cause difficulties in numerical calculations, as

happened for example, in [2] where it was not possible to evaluate the

free wave energy transmission at low frequencies and at frequencies

"close to coincidence." An explicit recognition of the smallness of c

can, nonetheless, be turned to advantage with the aid of modern perturba-

tion theory. This can be used to construct a sequence of analytical

approximations describing rib-associated phenomena, and to ensure that the

approximations blend smoothly into one another so as to cover the entire

range of frequencies.

A first step in this direction was taken in [5] where approximations

for small E, covering the entire frequency range, were derived for the

line transfer admittance A0, and the line drive admittance A of a fluid-0

loaded surface. The surface considered was a membrane with frequency-

dependent tension to simulate the dispersive wave characteristics of a

thin elastic plate. Naturally, of course, such a device fails to reproduce

the near-field behavior associated with shear rather than tension, but
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it was still felt that the membrane model could give useful results-in

particular, in the form of physical insight-for the role played by fluid

loading in the interaction between structural waves and surface disconti-

nuities. This role was discussed in [2]; the essential point is that

fluid loading is able to "mend" a surface discontinuity in a way that in

some frequency regimes is more or less complete, so that a structural wave

can experience total transmission across the rib-even if the rib has

infinite mechanical impedance (so that total reflection would occur in the

absence of fluid loading).

In the light of these remarks it is then appropriate to consider

whether the transmission might not be reduced in the presence of fluid

loading if a suitable finite mechanical impedance of the rib were

utilized. This will be considered in detail in Section 4 below. It

is also appropriate to inquire whether studies of structural waves

incident normally on a rib adequately cover applications in which free

structural waves are incident on a rib from all possible directions.

The problem of oblique incidence can be readily related to that for normal

incidence, as explained in Section 5 below, where the requisite trans-

formations are given. It turns out, however, that when the transforma-

tions are applied to the asymptotic expressions, the transformed expres-

sions are not uniformly valid for certain particular directions of

incidence. Separate studies have to be made for those directions, and

the results are briefly reported in Section 5-briefly, because it turns

out that no new phenomena arise in the oblique incidence case. In

particular, in the frequency range for which the "mending mechanism" of

fluid loading is inefficient for normally incident waves, it remains1 3



comparably inefficient for all obliquely incident waves. Thus, there

appears to be no significant filtering (i.e., selective transmission) of

waves incident from preferred directions, at least when the constraining

rib has infinite mechanical impedance.

One is then again prompted to consider the effect of finite rib

impedance, and in the case of oblique incidence a local reaction impedance

is inappropriate. The rib is therefore represented as a beam (or rather,

as the plate has been replaced by a membrane, by a string) with its own

nonlocal reaction. At each frequency w, a certain direction of incidence

corresponds to resonance of the rib, the free wavenumber of the rib being

matched by the incident wavenumber parallel to the rib, and it is shown

that there is perfect transmission of such oblique waves regardless of

fluid loading effects. In particular, there appears to be no way of using

fluid loading effects to significantly inhibit this selective transmission

of oblique waves which cause the rib to resonate.

In all this, the membrane model of the surface will be retained.

Extension to the case of a thin elastic plate may be a useful development

in due course, but a more urgent need at present is to extend these

studies of plane wave incidence on a single rib to cases where the incident

energy is generated by, say, a force at a finite (small or large) distance

from a rib, and where there are several regularly or irregularly spaced

ribs. These extensions will form Part II of this report. A completely

general formulation covering all these aspects (arbitrary numbers and

locations of ribs, arbitrary driving excitation, arbitrary (homogeneous)

surface response operators, etc.) is being given under separate cover [6];
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the point of Parts I and 2 of the present work is to give a quantitative

assessment, in simple model configurations, of the various coupling mech-

anisms implicit in the general formulation.

In the following sections, a surface or panel of the membrane type

occupies the plane y = 0, with fluid of density P., and sound speed c, In

y > 0, and a vacuum in y < 0 (with trivial modifications to allow for the

presence of identical fluid in y < 0). A single "rib," whose action on

the panel may be represented at each frequency w by a scalar admittance,

lies along the line y = 0, x = 0, and cases of normal incidence involve

waves propagating in the x-direction only. For oblique incidence, the

rib admittance is allowed to depend upon the wavenumber Z in the

z-direction, as well as on the frequency. The time factor is taken as

exp(-iwt), w > 0, and is omitted. Extensive use will be made of methods

and specific results reported in [5]; the readers familiarity with [5]

will be assumed.

2. FREE WAVE TRANSMISSION: NORMAL INCIDENCE

A subsonic free surface wave with velocity V exp(ik x) is incident

from x = - - on a single rib at x = 0. Write the total velocity of the

panel as

v total(X) Vo exp(ikIx) + vr(x)

and define the rib admittance A so that the force into the fluid withr

which the rib acts on the panel is given by

vtotal (xrO)-AF.



The single scalar A completely defines the effect of a line mechanical

r

constraint on a membrane type of surface. Next, relate vtotal (0) to the

amplitude V of the incident wave through the introduction of the line0 'o

drive admittance A0, giving (by definition)

V r (0) = A F

so that

V
F- 0A -A

r o

This rib-induced force then itself produces a subsonic surface wave field

transmitted to x = + , and given by

v(lxl x) A F exp(ik IxI)

A, being the line transfer admittance to large distances. The total

surface wave field at infinity to the right of the rib is thus

V toa (x -o + 1o~ ( + C--O- V° exp(ik X )

vtotal \A-A/ epix
r o

so that a transmission coefficient may be defined as

A
T + A -A (2.1)

r o

which is precisely Eq. (16) of 12] in a different notation.
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Now asymptotic approximations have been given in [5] for the admit-

tances A. and Ao, utilizing the fact that an appropriately defined fluid-

loading parameter is small in most applications. Clearly, these approxi-

mations can be used to evaluate T for any prescribed value of the complex

rib admittance A . Here, in order to emphasize the role played by fluid-r

loading, we evaluate the transmission for a rib of infinite mechanical

impedance (Ar = 0), the transmission then being non-zero only by virtue

of jhe fluid coupling. We use the dimensionless parameters of (51, namely

= /g 00 oo/g,

the specific mass and coincidence frequency, m and w , respectively.

being assignable quantities. The transmission oefficient is then

B
T = 1 - B ' (2.2)

Q20

where the dimensionless admittances B., B were evaluated in [5]. The
0

transmission coefficient will now be evaluated for various regimes in the

dimensionless frequency domain Q.

If E << I and 0 < Q < 1 (but 9 not close to 0 or i) we find

=e(l+D) D"+ ! 21 ln ( l+D ' + 0(E 2 ) (2.3)
2AS8/2 IT 1+

where D 1 1 - Q. The O(C2 ) term can calso be calculated from results

given in [5]. A numerical evaluation of ITQ/EI is given in Table 1, and
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TABLE I - VALUES OF ITS1/I CALCULATED FROM EQUATION (2.3)

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IT(2/cf 4.59 3.28 2.91 2.88 3.10 3.63 4.72 7.52 18.34

the results agree with the numerical plot given in [2, Figure 21 by

Maidanik, et al, except when 9 is small or close to unity. The existence

of a minimum value of IT(Q/CI close to ( = 0.4 should be noted. Note also

that Eq. (2.3) predicts infinite transmission as ( 0, with

and infinite transmission as S1 1 - , with

S E

These predictions are unacceptable and clearly indicate that the approxi-

mations leading to Eq. (2.3) are not uniformly valid. We find, in fact,

that complementary "matching" expansions are needed when Il-I =f 0(62A)

and when ( - 0(c).

Note finally that Eq. (2.3) implies that only a very small fraction,

0/-' .of the incident energy is transmitted when 0 < S1 < 1.

We turn next to S1 > I (but ( not close to 1) and find thiat

T 2C2 + O(E'). (2.4)
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Again, the 0(e2 ) term can be obtained from (51, but serves only to show

that Eq. (2.4) remains valid for arbitrarily large values of S. Thus the

transmission is virtually total at all frequencies above coincidence, a

surprising result at first sight, and one not in agreement with the

numerical evaluation given in Figure 2 of Maidanik et al [21.

Substantial transmission was found there only in the immediate vicinity

of 0 = 1, the transmission decreasing rapidly as 0 increases beyond 1.

Recall, however, that the results in Eqs. (2.3) and (2.4) apply only to

the transmission of the subsonic surface wave whether Q < 1 or Q > 1.

When 0 > 1, the wavenumber k is only slightly greater (by 0(2)) than the1

acoustic wavenumber k , and therefore the acoustic impedance P w/(k 2
-k )

o0 1 0

is very high. This is reflected in a very low value of A when Q > 1,

whereas the drive admittance does not change so dramatically as Q increases

through unity; and the effect of the rib, represented in T by Am/A , is

therefore small when Q > 1. In other words, because the wavenumber k is

only marginally subsonic, the rib can have little effect on it, and fluid

loading completely "mends" (cf. [21) the surface discontinuity presented

by the rib.

Now in the calculation of Maidanik et al [2], a Fourier integral

for the transmission at a point x > 0 of the total field generated by a

prescribed force at x < 0 was evaluated numerically for large, but finite,0

values of x and x , no attempt being made to separate the field out0 1

Private communication from G. Maidanik; in the published paper the
curve for 0 > 1 was inadvertently omitted.
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into its various components and to examine the separate transmission of

each of these. When SI < 1, the dominant mode generated and transmitted is,

of course, the subsonic free mode so that our results and those of [2]

would be expected to agree. When 11 < 1, however, the dominant wave in

the surface, at any rate for moderate distances xo, x1, is the "leaky wave

field" (see [7]), rather than the subsonic wave. Ultimately, all the leaky

wave energy is lost to the radiation field, and we are left (as xox 1  00)

with just the subsonic wave, but the distances must satisfy k x >>-

for this to be the case. One is led to believe, therefore, that the calcu-

lations of Maidanik et al actually refer to the transmission of the leaky

wave across the rib. To substantiate this, use the expression (4.3) of

[51 for the transfer admittance to large (km x >> 1) but not too large

(km x 
- l) distances of the leaky wave, and in place of (2.4) one finds

T(leaky) = E e-7ri/2[ 2- ] x

2 arc tan(P-l) + O()2) (2.5)

This prediction, for IT/cl, agrees very well with the results of Maidanik

et al [2]. The transmission, given in Table 2, is substantial only near
-di/22 -iri/2

l =1, dropping to e ) - 0.225 c e at I = 2 and decreasing

like

7 = Ti/2 I5/

3T

as 00.
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TABLE 2 - VALUES OF IT(leaky)/CI CALCULATED

FROM EQUATION (2.5)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

ITleaky/cI 13.96 4.44 2.20 1.32 0.87 0.62 0.46 0.35 0.28 0.225

We argue, however, that it must not be concluded that only the leaky

wave is significantly excited when Q > 1. That conclusion might be reached

from study of a force-excited panel where the input spectrum is white in

the wavenumber domain, and where the lower impedance of the leaky wave

(compared with the subsonic wave) ensures that the latter is only weakly

excited. If, on the other hand, the input spectrum is not white, but is

heavily concentrated in the subsonic wavenumber range k > ko, with hardly

any energy in k< k , then it is possible that the subsonic wave will be

favored over the leaky wave. This may be the case with hydrodynamic

excitations of the system (turbulent boundary layer pressures for example),

though such excitations will generally have less spectral energy around

the marginally subsonic wavenumber kI than at the characteristic hydro-

dynamic wavenumber. Consequently it is essential that the various wave

modes generated should be separated out the the transmission established

separately for each. More will be said about this aspect (and about mode

conversion, subsonic to leaky and vice versa, by the rib) in Part II of

this paper.

i'I



Next the situation near coincidence is analyzed, and an approximation

is found which matches smoothly into the small value T 0(c) of (2.3) for

S < 1 and into the unit value of T for Q > 1. The transmission refers,

for 0 < 1 and Q > 1, to the subsonic free wave. The nonuniformity is

characterized by

Il-Q _

and described by approximations in which the magnified frequency variable

1/0 (2.6)

is held fixed as e 0. Using the results of Section 5 of [5] one finds

T= p1  (2.7)
X (Op I+2X~)II

plus a remainder term which is O(e"/3) if X > X - (27/4)'/ but 0(e'/) if

X< X c (including X < 0). Here p() is the (unique) real positive root

of

F(q) q3 + Xq2 _ 1 0 (2.8)

and is one of the roots given explicitly by

12



+  co arc Cos 7

A A 2T 1 /27-
Co - -arc cos - I32, 3. A

A + 2A Cos - a 27

3 3 a c 3 ( 2 X 3

Around the critical value A there is a mild nonuniformity at higherC

order, but this does not affect leading order terms.

Observe thatT A is real and 0(1) when A = 0(1). It can be shown (see

15] for details) that as X *+oo, expression (2.7) decreases to the value

c/[2 (1-9) /1, matching imperceptibly the asymptotic behavior of T as

increases towards I from below. Expression (2.7) also matches smoothly

to the unit value of T for 0 > 1 (indeed a higher-order matching to the

two terms quoted in (2.4) was carried out in [5]). To see the general

features, note that

TX 6
Pi (3p +2X) 3

from which it follows (since 3p +2XO0) that T increases monotonically

from 0 to 1 as A decreases from + - to -

1.3

It . . .. . . .. :i '



In summary then, the transmission coefficient rises smoothly and

monotonically from a value O(E) to essentially unity, the transition being

2/
complete over the range 11-Si E-C. Precise values are easily computed

from (2.7); in particular we have the interesting result that

Tx 1 + O(€l )  (2.10)

at X = 0 (where the roots of (2.8) are p1 = 1, P2 = e2 1Ti/ 3, ' e4Tri/3

i.e., exactly at S = 1.

We turn next to the nonuniformity in (2.3) as R + 0. It turns out

that there is first a nonuniformity when 0 - 0(e), then a later one when

= 0(C2 ). Frequencies Q = O(e) are designated as "intermediate" and a

scaling 0 cA is employed together with expansions as c - 0 for A fixed.

The transmission coefficient in this case turns out to be

21 + (A+A)k '.. k

+ (l+2) In (+ lA)+ f! + 0 (E) (2.11)(1+A2)k O(A (211

This expression matches the formula (2.3) as A becomes large and Q becomes

small. The transmission TA is larger, 0(E ), than TQ, but expression (2.11)

is still not good down to arbitrarily low frequencies, as it continues

to predict infinite transmission as A - 0. Because of the term involving

In E, (2.11) is not quite in the form (0 ) times (a universal function of

A alone), but it is effectively in that form as the in C term varies very

slowly.

14



Next the "low-frequency" region Q O (c2  is examined, taking

E21 ) with expansions for fixed ) as c -* 0. The descriptions are compli-

cated and dealt with in detail in [5, Section 7]. Define

G(q 0 qElq 0 0 (2.12)

and denote the roots of G(q 0) 0 by s I, ~2 s 3* In all cases s is used

to refer to the unique real positive root (6) being always positive), while

s2' s are real and negative if j > j - 27/4 and form a conjugate pair

a ± iB, with aB > 0, when j < . Define also

S I= O s+2) (2.13)
nl 8n n

and 0 - arc tan (0/at), 0 < 0 < 7T/2. Then for ) > i~ one has the follow-
c

* ing expression for the transmission coefficient

- S ]+ (C2) (2.15)
W S in

L~S (3s,+2)J

while when 0 < j < C

(3s1+l) 1
T- IS (3s, 1) (3s+2)

F s + (3s,+l) + 1" + o(l) (2.16)
L ~ O (~10 O3s +2) s ,(3s +2L

15



(it being difficult to improve upon the o(l) estimate of the error when

< i ). After extensive manipulation it is possible to rewrite bothc

(2.15) and (2.16) in terms solely of the root s I (which determines the

free subsonic wavenumber), using the expressions

lii

S=L i -,-1 (2.17)

for > , and
C

Ins 1+3s2s I(Osl1+2) Ll+sj J I-1-3s, ,...

l+s + (1-3s)k

In (l+s )k - (1-3s )k
(2.18)

2s1 (3sl+2)

,3s -i1
0 arc tan L::1l (2.19)

for < , noting that 3s - 1 < 0 according as c so that all

radicals in these expressions are real and positive. These expressions

look complicated, but can be easily evaluated using the Table of values

of s given in reference [5]. They show that in the frequency range

- O(e2), an 0(1) fraction of the incident energy is transmitted across

the rib, and fluid loading effects have again managed to "mend" the

16



rib discontinuity even though the fluid loading parameter E (which

actually measures fluid mass divided by surface mass at the coincidence

frequency) is small.

Such examination of higher terms in the "low-frequency expansion"

as it is possible to carry out indicates that there are no further leading

order nonuniformities (in the transmission coefficient, at any rate), and

that (2.16) should be good down to zero frequency. If the limit Z - 0 is

taken, it is found, on reduction, that

1~ -iri/3
T e as 0 - 0 (2.20)
W 2

This result is in fact true, for sufficiently low frequencies, whatever

the value of the parameter E. It shows just how substantial the trans-

mission becomes in the "heavy fluid loading" limit.

There is a nonuniformity in these results at higher order in a narrow

region around the value

S= = 27/4 (2.21)
c

where one defines

= 7 (1+29) (2.22)

and considers % 0(1) as C - 0. The nonuniformity does not affect the

leading order terms, however, and it is found that

17



1

I- in4

217r + 0(e) (2.23)
T6 3 _ n 4 +-3 -

with ITg = 0.25 + 0(e). This higher order nonuniformity manifests

itself in the numerical computations of (21, where in Figure 2 one notices

a narrow plateau, centered on 0 = (0.26)2 = 0.068 which, for e = 0.1 (taken

in [21) isalmost identical with our = , and at which ITi has a local
c

maximum of 0.27 in good agreement with the prediction above of 0.25. As

remarked in [51, one might have suspected the curious little plateau of

arising from some numerical inaccuracies, but the analysis here shows

that it is indeed genuine.

The overall pattern of free subsonic wave energy transmission is

summarized schematically in Figure 1, in which is also included, for

Q > 1, the transmission coefficient for leaky waves. The various approxi-

mations were shown in [51 to overlap in the manner indicated in Figure 1.

This Figure largely speaks for itself, and the only further comment which

needs to be made is that it is possible to identify the physical mechan-

isms which dominate the various approximations. Inasmuch as it is

possible to express the admittances entirely in terms of a wavenumber k,

of a free subsonic surface wave, we need only quote the mechanisms

which dominate in determining that wavenumber (in contrast to [5], where

a slightly more elaborate description was given). Our model has retained

the following five possible physical attributes: (I) membrane stiffness,

(II) membrane mass, (III) fluid pressure forces, (IV) fluid compressi-

bility, and (V) fluid mass. For 0 < S. c I the dominant processes are (I)

18
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and (II); for Q > 1 they are (III) and (IV) for the subsonic wave, but (I)

and (II) for the leaky wave; for 1I-si =0( 2 ) all five processes are

significant; for Q = 0(E) only (I) and (II) are important; for Q = 0(E2 )

only (IV), fluid compressibility, can be neglected; and when Q - 0 the

mechanisms (I), (III), and (V) determine the heavy loading limit.

This completes our study of normal incidence energy transmission

across a single rib; oblique incidence will be discussed in Section 5.

We turn now to acoustic aspects of the action of the rib.

3. THE ACOUSTIC FIELD SCATTERED BY A RIB

In this section we deal with the acoustic fields generated when a

free subsonic wave is incident normally upon the rib, and when a plane

acoustic wave is incident upon the panel with the single rib, the

latter being determined by the so-called "non-specular reflection

coefficient." Both acoustic fields are readily derived from the field

generated by a single prescribed line force F acting on the panel, that

field being given by the Fourier integral

poW 2 F f+ -exp{iklxl - (k2-k2) y}

p(X,y) =-2'rrT J0oo(k2-.k 2)(0-0k) 00(31

The notation is standard except for P, equal to p0 /m where m is the

specific mass of the panel. Also one has k 2 = w 2 /T with T the membrane
m

tension, and ko - w/c° . Evaluation of this integral by steepest descents

or stationary phase gives an acoustic farfield

20
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p 2 F (2k Tr/r) eikor - sine
p(r,e) o o (3.2)

21TT [(k 2 cos2e - k2 )(-ik sine) - Vk21

0 m o m

with lxi = r cose, y = r sinO, 0 < 0 < 7/2. This estimate is valid for

all e if r is sufficiently large. If c << I and 0 < Q < I it is probably

enough to take k r >> 1, but when Q > 1 the estimate holds away from the
0

Mach directions e = arc cos - when k r >> 1, and close to those direc-0
-2

tions only when k r is very large, k r >> . The reader is referred0 0

to [7] for further details of the Mach wave field associated with

leaky waves in the surface, especially for a description holding when

k r is not as large as C-2.

Here Eq. (3.2) will be accepted as describing "the distant acoustic

field" in an appropriate, known sense. Then

Ip1 2 - ]' H(a,e,e) (3.3)
27rk r

0

with

sin 2 eH(n,£,e) = £2(3.4)

[(Q coS2O - 1)2 sin 2e + L2

and we now state, very briefly, leading order approximations to the

directivity function H.

(1) 0 > 1. Define a Mach angle 6
M = arc cos Q- and write e = OM + EX

when 8 is close to 0M* If 10-eMi is not as small as O(£)

H - 1 (3.5)
( cos28 - 1)2
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except when 6 is small, 6 = O(C) = cip say, and for this case

H (3.6)

This vanishes for 4) - 0, a manifestation of the well-known "Lloyd's

mirror" effect for grazing incidence acoustic waves.

If I -0M 0(E), so that X = 0(1), then

sin2 0b

M (37)
c2[4X2 22 coO2M sin40M  1

whose 0(C 2) largeness demonstrates the intense field at very great
-2)

distances (k r >> C ) within 0(e) of the Mach directions as compared

with the 0(l) fields (3.5) and (3.6) elsewhere.

(2) 0 < Q < 1. Here the fluid loading term E2/0 must be retained only

for 0 = 0(c), where it leads again to the form (3.6). This low angle

nonuniformity arises in all cases, and will receive no further comment.

For 0 larger than 0(c),

H (3.8)
(l-_2cos20)2

which has only a weak dependence upon 0 and indicates fairly uniform

directivity.
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(3) I1-Q = O(e 2/). No special phenomena arise in this case. The

Mach angle eM is 0(e /3), whereas the Lloyd's mirror effect operates only

for small angles e = 0(e), so that the Mach wave field continues to be as

described in (1) above, the field for Q < 1 as in (2) above.

_(4) Q - 0(c). Here, writing 2 = cA and letting C - 0 one finds

H - 1 (3.9)

and the field is isotropic (except for 6 = 0(E)).

(5) f2 = 0(E2). Put S2 = C2  and let E - 0. Then for all angles,

including e 0(c),

H sin 2  (3.10)
sin 20 + 1

which indicaLes a significant effect of fluid loading on the field at

all angles, that effect leading to a dipole type of behavior,

H ~ & sin 2 6 (3.11)

when Z 1.

Most of the results given here are, of course, well-known, though it

may be helpful to have them set out as above, as this makes it clear

just when the different approximations hold.

To relate these results to the field scattered when a subsonic

surface wave is incident upon a rib, all one has to do is to substitute

the expression
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-A (3.12)A - A
r 0

given in Section 2, into (3.3). Here V is the amplitude of the incidento

wave, A the admittance of the rib, and A the drive point admittance ofr 0

the fluid-loaded surface. The dependence of A upon 0 and E has been0

thoroughly explored in [51, while A is a specified function of 0 alone.r

The substitution of (3.12) into (3.3) therefore changes only the level

of the sound pressure in a fully known way, and does not change the

directivity, which is completely defined by H(Q,t,e).

As for the non-specular reflection problem, suppose that a plane

acoustic wave with pressure

PO exp(ik x cos0 - ik y sine )

is incident at an angle 0 to the surface. Then it is easy to show
0

(a general formulation for the case of many ribs is given in [61) that

the non-specular field scattered by the rib is again given by (3.1) with

ik sin0 (I-R*)(3.13)

(A-A (3.13)
r o

where

ik sine (Scos2 e 0-1) - (314
\is sineo (CoS 2 0 -1) +

is the plane wave reflection coefficient. This value for F is of the

same form as (3.12), with V in that expression replaced by the velocity
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( P)(-ik sinO)oo o0 )

which would be generated at x = 0 by incident and reflected acoustic waves

if the rib were not present. The directivity function, of incidence angle

o and observation angle 0, arising from (3.2) with (3.12) and (3.14), is0

called the non-specular reflection coefficient. Its dependence upon 6

has already been dealt with. The dependence of the squared magnitude of

this coefficient upon incidence angle is as

E2 sin 2e

E2 + 2 sin2e (S2 cos 2 e -1)2
0 0

which is, as expected from Reciprocity requirements, identical with the

O-dependence. The behavior of the non-specular reflection coefficient is

therefore already described by the remarks above relating to H(Q,c,0).

4. EFFECTS OF FINITE RIB IMPEDANCE

In the free wave energy transmission problem considered in Section 2,

there will be substantial direct "mechanical" transmission across a rib

unless the rib has very high mechanical impedance. We have seen that in

certain frequency regimes there is also substantial transmission, by

virtue of fluid loading effects, even when the rib has infinite impedance.

The question to be addressed here is the following: "In those frequency

regimes, is it possible to reduce the transmission by balancing fluid-

loading effects against finite impedance effects?"
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In terms of the impedance Z = A-1 of the rib, the normal incidence
r r

transmission coefficient is

1 + zr (A -A )
T Z= (4.1)

r o

in which we write

Z =-R - iX (4.2)r

for the resistive and reactive components, so that for a simple damped

mass-spring system

X (K-MW2 ) (4.3)

and K, R, M are all positive constants.

Near coincidence, i.e., for Il-Qj = 0(62P), there is significant

transmission, and it is found from the admittance approximations given

in [5] that here

1 k+ m P'_-) (R+iX)

T mw/ 2 " (4.4)
1 - )+ - (R+iX)

The quantity p,/(3p,+2X) is the transmission coefficient for infinite rib

impedance, and increases from very small positive values to unity as the

frequency increases through a range O(c213) around the coincidence frequency.

It is clear that there can be no choice of R,X which will lead to very

substantial reductions in the value of ITI in the range where pl/(3p,+2X)
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is close to unity. That is really not surprising, for around the coinci-

dence frequency the surface wave is essentially a plane acoustic wave in

the fluid, with very high impedance p o/(k2-k2)k in directions normal to

the surface. The rib will therefore not be able to significantly affect

the propagation of that wave, whatever the rib impedance.

Consider, on the other hand, very low frequencies, where fluid load-

ing effects are dominant and where the infinite-impedance transmission is

given by (2.20). Here one finds

I i _iM) '/6 (R+iX)
T= V (4.5)

1 + 1( - (R+iX)

from which it can be seen that the choices

R = 0, _R X1 - 0 (4.6)

minimize T, and in fact make T - 0. The negative value of X required

for (4.6) implies that the rib is driven below its resonance frequency;

the balance expressed by (4.6) is then essentially between the stiffneRs-

like behavior of the imaginary part of the surface drive point impedance

and the mass-controlled imaginary part of the rib impedance. (Attention

was drawn in [5] to the surprising fact that Im A < 0 for the fluid-o

loaded membrane throughout the whole frequency range, implying that fluid

loading acts as an equivalent stiffness.) Equation (4.6) (or its analog

for a more realistic type of panel) might only be capable of satisfaction

over a very narrow frequency band, if at all; there is, nonetheless, a
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clear possibility of reducing the low-frequency free wave transmission by

using a mass-controlled rib impedance to at least partially cancel the

fluid-loading induced drive point stiffness.

5. FREE WAVE ENERGY TRANSMISSION; OBLIQUE INCIDENCE

The rib lies along the z-axis, and we now assume that the whole wave

field has the dependence exp(ilz), so that, for example, tis the

z-wavenumber of a free surface wave obliquely incident on the rib.

It is then easy to see that any problem with this z-dependence can

be reduced to a purely two-dimensional one in the (x,y) plane, provided

that in the two-dimensional problem we make the replacements

k - K = (k2-L2)
m m m

k - K = (k2 -2) (5.1)
0 0 0

and

p- v = pk2/K
2

m m

Since, in the original integral defining the surface response (Eq. 2.10

of [5]), the points k and km must lie above the path of integration, it

follows that we must take K - + i(Z2-k 2 )k , K _ + i(k2 -k2) when K and
m m 0 0 m

K are not real. For normalized functions which depend only on the twoo

parameters 9 and C (equivalent to the ratios of the three wavenumbers

in (5.1)) the correspondence (5.1) may be expressed as
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n4 ~*m LL) 1(5.2)

where

Consider first the wavenumber in the x-direction of a free surface

wave at frequency w; for that wavenumber to be real, X. must not exceed

the total wavenumber magnitude of a free wave. In reference [51 approxi-

mations were given for the total wavenumber, so that one has the following

values of the maximum permissible z-wavenumber:

___ > :£ = k (1+ C2 +O(eC) (5.3a)max o 2SI2(Q_1)2J

0____ <9r,<1 zmx m 1 + Ce + O(C 2
9  (5.3b)

__ _ _ max M ( 2 Ak

.2- 2 0(1): 91max = -k/ik s (5.3d)

(where al is the positive root of s 3 + s 2 0)

9.0i k/)/ (5.3e)
max m
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A - W = (1): k - k { 1 +k 2hp }+O(e/)) (5.3f)
max m

(where p, is the positive root of p3 + Xp 2 _ 1 0).

One sees then from (5.3) that for frequencies 0(C2) there is a

change, by an 0(1) factor, in the maximum permissible Z, from its value km

in the absence of fluid loading, and that as 2 - 0 this factor tends

(slowly) to infinity. In this "heavy fluid loading" limit, all waves can

propagate in the x-direction, no matter how large their z-wavenumber. In

all other frequency ranges below coincidence the fluid loading correction

to the vacuum value k is small, and corresponds to an increase associatedm

with the addition of fluid mass to surface mass. For Q > 1, a wave

propagates in the x-direction with no attenuation if (5.3a) is satisfied,

and the wave is subsonic. If, however, the wave is an oblique subsonic

leaky wave, its total wavenumber is

k l + ic + (C2 )% +Q(-~ +

and therefore it will propagate in the x-direction with only slow

attenuation, O(exp(-cx)), if I < km, but with strong attenuation if

> k . Thus we can takem

n > 1: t - k (5.3g)
max m

as the condition for a leaky wave to "propagate" in the x-direction.
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Results for the transmission coefficient acrosss a rib of infinite

impedance were presented in Section 2, as functions of E and Q. It is

straightforward then to use (5.2) to immediately produce results for

oblique incidence, though the results are algebraically complicated.

Suppose first that Q > 1; then if L2 < 1, Q, > 1 and therefore

T - 1 + O(C 2) from (2.4), while if L2 > 1, 1, < 1 and therefore T - 0(E,)

2from (2.3). Since C* = 0(c) unless L is close to Q or to 1, we can say

that when Q > 1 an oblique wave with L2 < 1 is essentially totally trans-

mitted (as for normal incidence), but has a transmission coefficient of

only 0(c) if L 2 
> 1.

Suppose next that 0 < Q < 1, with 0 not close to 0 or 1. When L is

close to 1 a separate examination is needed anyway, so that we can say,

from (5.3b) that L2 < 1. Then G, < 1, and Eq. (2.3) gives the trans-

mission coefficient except when , is small, that is, when L2 is close

to S. We have made a detailed analysis of the latter possibility, using

a scaling L2 = S- pE2 and keeping p fixed as C 0 0. By direct calcula-

tion of the case L2 = 9 we confirm that expansions in the p-variable are

in fact valid down to p = 0. Throughout the region p = 0(1) it is found

that the admittances are given by

0A Tk N + 0(c) (5.4a)

m 2D

A Tk - + O(E) (5.4b)
m 2DN

and hence that T = 0(c). Specifically, when L2  S1 we find
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T 2'( n 1+ 0(V2 /K 2)(.c
T F - )[T +n +K (5m

with v/K = (/0)(1-L2) - h.m

The prediction T = 0(c) comes also from use of (2.3) away from L2 = Q,

so that we conclude that, except perhaps for L2 z 1, but including the case

L 2 z Q, the transmission coefficient is small, of order 6, for both

normally and obliquely incident waves with frequencies satisfying 0 < Q< 1.

As S2 decreases further, the transmission coefficient increases,

becoming 0(C2 ) when 0 = 0(c) and 0(l) when S1 = 0(C 2 ), just as for normal

incidence. The functional forms, of course, vary with L, but this does

not change the overall picture, and in fact as Q - 0 the dependence on L

drops out, and the transmission coefficient is given by (2.20) for all

waves.

The case L z 1 remains Lo be dealt with. It turns out that two

"inner" expansions are needed to cover the nonuniformity here, reflecting

the fact that the basic approximation (2.3) is known to be nonuniform

when c and when C 2 _ S. If C * -, as L2 - 1 one finds that

L2 _10(E), while if E2 ~-2 as L2 - I one must have L2 - 1 = 0(c 2 ).

2 2

One therefore defines L2 = 1 - yc/', say, and constructs approximations

to the admittances with y fixed as C - 0. These approximations cannot

be gotten from approximations like (2.3); indeed the point of introducing

the y-variable is to remedy the deficiencies of (2.3) when y is 0(1), so

that the new approximations have to be derived from exact results given

in [5], and then matched to the limiting behavior of (2.3). The process

is straightforward, but lengthy, and leads to admittances
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Tk 3

m 2yke Y3 4y /2 RkDk

A 2ci jT k  4 2 D/3 + O(C2/3) , (5.6)
Tk 2 4y' Cj/3 2y62 Dk

m

from which we find

A

T=1--=(e ) (5.7)A
0

We have not carried the calculation far enough to see if, in fact, the

coefficient of the 0(c 3) term in T is zero (which would then lead to

T = 0(c)), but at any rate it is clear that the transmission is still

small when T = 0(1).

The approximations (5.5) and (5.6) do not apply right down to

L2 = 1 (i.e., Y = 0), as the ratio of consecutive terms is O(cV3/y) and

2
not ur.iiornily small. To remedy, this one writes L 1 - KC, constructs

approximations for K = 0(l) and matches them to the asymptotic behavior

of (5.5) and (5.6) as y 0 0. The results are

W\

A 2 K1 K+ - + 0() (5.8)0 \Tk 2c ~ D

2w i 4 + , + 0(c - ) , (5.9)

(Tk 4E S /2

T = 0(E)

and these results appear to apply right down to K 0 0, so that no further
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"inner" expansions are needed. Although the dependence of T upon K has

not been obtained, even to leading order, it was not felt to be worthwhile

to pursue this matter further. The essential point is that there are

nonuniformities around L2 = Q and L 2 = 1 (reflected, for example, in the

much larger values of the admittances as L2 - 1), but these nonuniformities

affect the drive admittance A and the transfer admittance A in the same
0

way, and still leave a very small value of the transmission coefficient

(for a rib of infinite mechanical impedance) both around L2 = Q and around

L 2 = 1.

If the rib impedance is not infinite there are many possibilities,

but in that case there will be a substantial mechanical transmission of

energy, largely independent of fluid loading effects. What has been

shown here is that, where fluid loading is the only mechanism for energy

transfer, no dramatic changes are associated with oblique incidence; in

particular, waves with z-wavenumber close to either k or k are noto m

transmitted with significantly different efficiency from normally incident

waves.

In the case of finite rib impedance, this will normally depend on the

z-wavenumber and on the frequency separately if the rib is, for example,

of the string or beam type with nonlocal reaction. Thus in (4.3) the

stiffness K could be written as

MW 2(
0

where the resonance frequency w is a function of Z. For certain ranges0

of driving frequency w, the condition w 0 W may be met for a certain
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small range of Z,, and in that case, provided the resistive part of the

rib admittance is then small compared with A.. and A.9 it follows from (4.1)

that

T z 1 (5.10)

This almost perfect transmission is the result of mechanical coupling

across the rib, and one may ask whether fluid loading effects can sig-

nificantly change either the magnitude of the transmission, or the fre-

quency bandwidth for which (5.10) holds. To examine this, ignore the

resistive term in (4.2), and use the normalized admittances B0, Bo defined

in [5]. Then

2- (12

T 2 (5.11)

m Wi

where T. is the transmission coefficient for infinite rib impedance. Now

generally Too is small, while B 0is then close to its value ( k) in the

absence of fluid loading, and then it follows that fluid loading effects

on both the magnitude and bandwidth of the "resonant" transmission are

negligible. The same applies at frequencies around coincidence, where

T .0 is close to unity; in that case we have T z 1 regardless of whether

the resonance condition w - w 0is met in this frequency range or not. If

we take the very low frequency limit w -~ 0 we find that B 0vanishes like

WA , while we assume that k mvaries like Wk, as it would for a thin plate.

Then the second term dominates in both numerator and denominator of
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(5.11), and so

T T

as w -* 0. Thus for low frequencies, fluid loading effects (represented

by the variation of B with w) again substantially "mend" the impedance0

discontinuity, and except for resonant rib conditions, the low-frequency

transmission is essentially identical with that for normal incidence and

infinite rib impedance. At the resonant rib condition it appears that

T z 1 because of mechanical coupling, and fluid loading effects are not

able to significantly offset that coupling.

6. CONCLUSIONS

It is hoped that this analytical study of a very simple model con-

figuration will contribute to understanding of fluid loading effects,

both by providing insight into the physical processes, and also by

complementing numerical studies (such as reported in (1] and [21) which

tend to run into difficulties-even in simple configurations-precisely

where fluid loading effects are most pronounced and most interesting.

Highly accurate predictions for specific cases have not been given,

though the analytical results given here have been put in a form where

all the sensitive behavior has been explicitly extracted, leaving simple

functions which can indeed be readily computed in any specific case.

Purely numerical computations of Fourier integrals for fluid-loaded

plate dynamics can (indeed, are bound to) find great difficulty in

resolving the balance between structural and fluid coupling; as remarked

above, this happened in the work reported in [1) and [2], both at low
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frequencies and close to the coincidence condition. The perturbation

method approach shows why such difficulties are likely to arise, shows

how a balance is achieved between various competing physical mechanisms

in different frequency ranges, and provides (at the least) scalings and

estimates of effects which should be useful in computational studies of

more realistic configurations.

In Part II of this work we intend to pursue the application of these

methods to structures with two or more inhomogeneities.
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